The most likely answer to this problem would be (1) more mass and more inertia.
A 15-kilogram cart at rest and a 5-kilogram box would make up a 20-kilogram cart and box that is at rest on a horizontal surface. The mass changed into something more, of course, as a result of combining the two object into one and by combining the two objects' mass, the inertia that it previously possessed as a cart by itself was increased when the inertia of the box was also combined to the cart.
Well if climate change is one of the options then that would be it
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz
Classics.
Resistance is equal to relation between voltage and current.

If we express current:

If current is in fact 0 then one of the quantities either voltage or resistance must be equal to zero. Since resistance cannot be equal 0, because that would violate mathematical law that states that division by zero is undefined the only logical conclusion is voltage.
So the answer should be C voltage and B zero.
Hope this helps!