The Great Oxidation Event (GOE), sometimes also called the Great Oxygenation Event, Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust,[2] or Oxygen Revolution, was a time period when the Earth's atmosphere and the shallow ocean first experienced a rise in oxygen, approximately 2.4 billion years ago (2.4 Ga) to 2.1–2.0 Ga during the Paleoproterozoic era.[3] Geological, isotopic, and chemical evidence suggests that biologically produced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed Earth's atmosphere from a weakly reducing atmosphere to an oxidizing atmosphere,[4] causing many existing species on Earth to die out.[5] The cyanobacteria producing the oxygen caused the event which enabled the subsequent development of multicellular forms.
Answer:
not 100% but i think its 1.57x10^20
Explanation:
5.25x10^-4g / 2.016g
2.60x10^-4 x 6.022x10^23= 1.56x10^20 molecules
Answer:
Part A. The half-cell B is the cathode and the half-cell A is the anode
Part B. 0.017V
Explanation:
Part A
The electrons must go from the anode to the cathode. At the anode oxidation takes place, and at the cathode a reduction, so the flow of electrons must go from the less concentrated solution to the most one (at oxidation the concentration intends to increase, and at the reduction, the concentration intends to decrease).
So, the half-cell B is the cathode and the half-cell A is the anode.
Part B
By the Nersnt equation:
E°cell = E° - (0.0592/n)*log[anode]/[cathode]
Where n is the number of electrons being changed in the reaction, in this case, n = 2 (Sn goes from S⁺²). Because the half-reactions are the same, the reduction potential of the anode is equal to the cathode, and E° = 0 V.
E°cell = 0 - (0.0592/2)*log(0.23/0.87)
E°cell = 0.017V
Answer:
Anything not on the periodic table is an element non example! ... So, for a substance to be an element, all of its atoms must have the same number of protons. Examples of elements include hydrogen, lithium, nickel, and radium.
Explanation: