Answer: 1. 3.23 m
2. 32.4
3. B adding solvent and C removing solute
Explanation:
1. Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent
where,
n = moles of solute
= weight of solvent
Now put all the given values in the formula of molality, we get
2. Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
Therefore, the moles of
is 32.4
3. Molarity can be decreased by decreasing the moles of solute and by increasing the volume of solution.
Thus adding solvent and removing solute will decrease the molarity.
Answer: a)
is the limiting reagent
b) 0.27 g of
will be produced.
Explanation:
To calculate the moles :


According to stoichiometry :
3 moles of
require = 2 moles of 
Thus 0.003 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
b) As 3 moles of
give = 2 moles of 
Thus 0.003 moles of
give =
of 
Mass of 
Thus 0.27 g of
will be produced.
Physicam because the size or form is changing not what its composed of
Commercial agriculture can often lead to water-quality problems in the following ways:
- The washing of fertilizers and pesticides into water bodies from farms.
<h3>What is water quality?</h3>
Water quality refers to the state of a water body that encompasses it's physical, chemical and biological characteristics.
The water quality of a water body is crucial to its suitability for domestic or drinking purpose.
Commercial agriculture greatly affects water quality in the following ways:
- The washing of fertilizers and pesticides into water bodies from farms.
Learn more about water quality at: brainly.com/question/20848502
#SPJ1
It's 2) a positively-charged nucleus is surrounded by mostly empty space (aka Rutherford's Model).
Most of the atom's mass is inside the nucleus (which contains protons [+] and neutrons [0 charge]), while the electrons [-] "float" around the nucleus like clouds. This is why it's said that the atom is 'mostly empty space'.