I believe the answer is microwaves
Answer:
A. a new substance is being produced.
Explanation:
The bubbles most likely indicates that a new substance is being produced by this reaction. In essence, we describe this sort of change as chemical change.
In a chemical change, new substances are usually produced. They are accompanied by the evolution or absorption of energy.
The reaction of Zinc with a strong acid to produce bubbles on the surface of the metal indicates a chemical change and the formation of a new kind of substance.
Take for example, let zinc reacts with hydrocholoric acid, HCl;
Zn + 2HCl → ZnCl₂ + H₂
Since Zn is higher than Hydrogen in the activity series, it will displace it from HCl and liberate hydrogen gas as a product. This will cause the bubbles observed in the reaction.
This is a chemical change and new products have been formed.
B and D are wrong because they are both physical changes.
C is wrong because no information about such is provided by the problem statement.
So, when a piece of zinc metal combines with a strong acid, a new kind of substance is produced.
Answer:
The standard change in free energy for the reaction = - 437.5 kj/mole
Explanation:
The standard change in free energy for the reaction:
4 KClO₃ (s) → 3 KClO₄(s) + KCl(s)
Given that ΔGf(KClO3(s)) = -290.9 kJ/mol;
ΔGf(KClO4(s)) = -300.4 kJ/mol;
ΔGf(KCl(s)) = -409 kJ/mol
According to Hess's law
ΔGr (Free energy change of reaction)= ∑(Product free energy - reactant free energy)
⇒ ΔGr⁰ = {3 x (-300.4) + (-409)} - {3 x (- 290.9)}
= - 901.2 - 409 + 872.7
= - 437.5 kj/mole
Answer:
Yes, if you're talking about molar mass or grams
Explanation:
Hope this helps!
Answer:
5SiO2 + 2CaC2 = 5Si + 2CaO + 4CO2
Explanation:
balancing equations is a lot of trial and error. My strategy to approaching this equation was to get the O's balanced. After trying several combonations I found that I needed 10 O's on each side of the equation for the other elements to match up. After I balanced the O's, I balanced my C's to 4 on each side. Then I balanced my Ca's to have 2 on each side. And last but not least I balanced my Si to have 5 on each side.