<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
Acid-base tiltrations has DNA that can help in the process of neutralization. not so sure about it
Answer:
A lot, because it belt inclined at an angle of 36.9° above the horizontal.
I need points haha!
Answer:
0.328 atm
Explanation:
Kp is the equilibrium constant calculated based on the pressure, and it depends only on the gas substances. It will be the multiplication of partial pressures of the products raised to their coefficients divided by the multiplication of partial pressures of the reactants raised to their coefficients.
For the equation given, the stoichiometry is 1 mol of NH₃ for 1 mol of H₂S, so they will have the same partial pressure in equilibrium, let's call it p. So:
Kp = pxp
0.108 = p²
p = √0.108
p = 0.328 atm, which is the partial pressure of the ammonia.
Answer:
the centers for disease control and prevention