Methane CH4 CH4 1 hexane C6H14 CH3(CH2)4CH3 5
ethane C2H6 CH3CH3 1 heptane C7H16 CH3(CH2)5CH3 9
propane C3H8 CH3CH2CH3 1 octane C8H18 CH3(CH2)6CH3 18
butane C4H10 CH3CH2CH2CH3 2 nonane C9H20 CH3(CH2)7CH3 35
pentane C5H12 CH3(CH2)3CH3 3 decane C10H22 CH3(CH2)8CH3 75
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
2(NH4)3PO4 (aq) + 3Ni(NO3)2(aq) ------> Ni3(PO4)2(s) + 6NH4NO3 (aq)
Ni3(PO4)2 is a precipitate.
<u>Given information:</u>
Concentration of HCl = 0.035 M
<u>To determine:</u>
pH of the solution
<u>Explanation:</u>
Hydrochloric acid, HCl is a strong acid. It will completely dissociate to give H+ and Cl- ions
HCl → H+ + Cl-
Hence the concentration of H+ = Cl- = 0.035M
Now, pH measures the strength of H+ ions in a given solution. It is expressed as:
pH = -log[H+]
pH (HCl) = -log(0.035) = 1.46
Ans: pH of 0.035M HCl is 1.46
Answer:
FeSO2
Explanation:
Please see attached picture for full solution.