The answer to your question is D!
Molarity is defined as the number of moles of solute in 1 L of solution
the mass of Ca(NO₃)₂ present - 8.50 g
therefore number of moles of Ca(NO₃)₂ - 8.50 g / 164 g/mol = 0.0518 mol
the volume of solution prepared is 755 mL
therefore if there are 0.0518 mol in 755 mL
then in 1000 mL the number of moles - 0.0518 mol / 0.755 L
molarity is therefore - 0.0686 M
Answer:
(1) order = 2
(2) R = K [A]²
Explanation:
Given the reaction:
A--------->Product
The rate constant relation for the reaction is given as:
R(i) = K [A]............(*)
Where R(I) is rate constant at different concentration of A.
Taking the rate constant as R1, R2 and R3 for the different concentrations respectively. Then the following equations results
0.011 = K [0.15] ⁿ.........(1)
0.044 = K [0.30]ⁿ .......(2)
0.177 = K [0.60]ⁿ .........(3)
Dividing (2) by (1) and (3) by (1)
Gives:
0.044/0.011 = [0.3/0.15]ⁿ
4 = 2ⁿ; 2² = 2ⁿ; n = 2
Similarly
0.177/0.011 = [0.60/0.15]ⁿ
16.09 = 4ⁿ
16.09 = 16 (approximately)
4² = 4ⁿ ; n = 2
Hence the order of the reaction is 2.
The rate law is R = K [A]²
<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.
Answer:
It increases by a factor of eight
Explanation:
When temperature is held constant, gas pressure changes according the volume, in undirectly proportion.
Volume increases → Pressure decreases
Volume decreases → Pressure increases
As volume gas, was reducted from 4L to 0.5L, it was reduced by 1/8, so the pressure gas was increased by a factor of eight.