Answer: Its smaller jaw bone
Explanation: Just look at the picture
Answer:
it is important that the president represents the people it is ridiculous that my friend thinks otherwise it is good that I don't think that way it is sad that many people passed from C19.
Explanation:
Answer: Four amino acids.
Explanation:
RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) are polymers made up of long chains of nucleotides. Thus, a nucleotide is the basic building block of nucleic acids and consists of a sugar molecule (ribose in RNA or deoxyribose in DNA) linked to a phosphate group and a nitrogenous base. <u>The nitrogenous bases can be Adenine (A), Thymine (T), Cytosine (C), Guanine (G) or Uracil (U) replacing T in RNA</u>. DNA is the molecule that stores the genetic information to synthesize polypeptides or proteins (set of amino acids). When proteins need to be created, DNA is transcribed into RNA and this RNA is translated in ribosomes to create polypeptides.
Complementarity is the ability to combine with their complement. A and T (or U) are complementary, while C and G are complementary to each other. Complementarity is the principle of replication and transcription, because it is a propery of both DNA and RNA sequences. Their the nucleotide bases at each position of the sequences are complementary, allowing cells to copy information.
Nucleotides in RNA are grouped into codons, which consist of groups of 3 nucleotides where each codon codes for an amino acid. Therefore, <u>the sequence of bases in nucleic acids determines which protein will be synthesized</u>. Protein synthesis begins with a start codon (AUG, which codes for the amino acid methionine) and ends with a stop codon (UGA, UAG and UAA). So, if there are 15 nucleotides, there are 15 bases. Since they are grouped in groups of 3, we will have a polypeptide of 4 amino acids.
<u>3 nucleotides form a codon, so 12 nucleotides form 4 codons giving 4 amino acids. The last codon, is formed by the last 3 nucleotides and form the stop codon that stop protein synthesis</u>.
Answer:
Greenhouse gases from human activities are the most significant driver of observed climate change since the mid-20th century.1 The indicators in this chapter characterize emissions of the major greenhouse gases resulting from human activities, the concentrations of these gases in the atmosphere, and how emissions and concentrations have changed over time. When comparing emissions of different gases, these indicators use a concept called “global warming potential” to convert amounts of other gases into carbon dioxide equivalents.
Explanation:
Why does it matter?
As greenhouse gas emissions from human activities increase, they build up in the atmosphere and warm the climate, leading to many other changes around the world—in the atmosphere, on land, and in the oceans. The indicators in other chapters of this report illustrate many of these changes, which have both positive and negative effects on people, society, and the environment—including plants and animals. Because many of the major greenhouse gases stay in the atmosphere for tens to hundreds of years after being released, their warming effects on the climate persist over a long time and can therefore affect both present and future generations.
Answer;
Chlorophyll
Chlorophyll is the green pigment found in plants traps energy from the sun for photosynthesis.
Explanation;
-Green plants requires food for their day to day activities, thus they use the process of photosynthesis to make their own food, which they use to generate energy or store for the future use in form of starch.
-Chlorophyll a pigment that gives plants their green color is vital during the process of photosynthesis. During the first phase of photosynthesis light dependent stage), chlorophyll traps sunlight which is used to split up water molecules to oxygen atoms and hydrogen ions, a process called photolysis.