Answer:
We need 7.5 mL of the 1M stock of NaCl
Explanation:
Data given:
Stock = 1M this means 1 mol/ L
A 0.15 M solution of 50 mL has 0.0075 moles NaCl per 50 mL
Step 2: Calculate the volume of stock we need
The moles of solute will be constant
and n = M*V
M1*V1 = M2*V2
⇒ with M1 = the initial molair concentration = 1M
⇒ with V1 = the volume we need of the stock
⇒ with V2 = the volume we want to make of the new solution = 50 mL = 0.05 L
⇒ with M2 = the concentration of the new solution = 0.15 M
1*V1 = 0.15*(50)
V1 = 7.5 mL
Since 0.0075 L of 1M solution contains 0.0075 moles
50 mL solution will contain also 0.0075 moles but will have a molair concentration of 0.0075 moles / 0.05 L =0.15 M
We need 7.5 mL of the 1M stock of NaCl
Neils bohar proposed his atomic model in 1913.
He describe that's electron travel in a circular orbit surrounds the neuclus of an atom.each orbit has quantized energy and size. Energy is transmitted when an electron jumps from one to other orbit near to nucleus.and it absorb energy when it jumbs away from nucleus.he also said that these electrons are restricted to fixed orbits. In excited state of electron, they absorb or emitt photon with specific wavelength.
Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>
The answer is Solid.
This is on account of the substances that develop a solid are packed in a settled, firmly pressed geometric plan.
Step 1-Light Dependent
CO2 and H2O enter the leaf
Step 2- Light Dependent
Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2
Step 3- Light Dependent
The electrons move down to enzymes
Step 4-Light Dependent
Sunlight hits the second pigment molecule allowing the enzymes to convert ADP to ATP and NADP+ gets converted to NADPH
Step 5-Light independent
The ATP and NADPH is used by the calvin cycle as a power source for converting carbon dioxide from the atmosphere into simple sugar glucose.
Step 6-Light independent
The calvin cycle converts 3CO2 molecules from the atmosphere to glucose
calvin cycle
The second of two major stages in photosynthesis (following the light reactions), involving atmospheric CO2 fixation and reduction of the fixed carbon into carbohydrate.