Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707
the poly atomic molecule is H2
Answer:
follow me and pm and I answer your question
Answer:
Explanation:
To solve the problem, we must know the kind of compounds we are dealing with.
For the first compound, P1 and second compound P2:
N O N O
Mass percent 64.17 35.73 47.23 52.79
Atomic mass 14 16 14 16
Number of
moles 64.17/14 35.73/16 47.23/14 52.79/16
4.58 2.23 3.37 3.30
Simplest
ratio 4.58/2.23 2.23/2.23 3.37/3.30 3.3/3.3
2 1 1 1
P1 compound is N₂O
P2 compound is NO
These are the compounds,
In N₂O = 28:16
NO = 14:16
This is the ratio of nitrogen to a fixed mass of oxygen for the two compounds.
For example, copper is used for electrical<span> wiring because it is a </span>good conductor of electricity<span>. </span>Metal<span> particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in </span>metals<span> can move through the </span>metal<span>, allowing </span>metals<span> to conduct </span>electricity<span>.</span>