Answer:
60 mph (miles per hour)
Explanation:
0.5 hours is 1/2 of an hour, so to get the number of miles for a whole hour you multiply the miles ran by 2.
30 times 2 is 60.
Explanation:

Equilibrium constant of reaction = 
Concentration of NO = ![[NO]=\frac{2.69\times 10^{-2} mol}{1 L}=2.69\times 10^{-2} M](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7B2.69%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D2.69%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of bromine gas = ![[Br_2]=\frac{3.85\times 10^{-2} mol}{1 L}=3.85\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B3.85%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D3.85%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of NOBr gas = ![[Br_2]=\frac{9.56\times 10^{-2} mol}{1 L}=9.56\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B9.56%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D9.56%5Ctimes%2010%5E%7B-2%7D%20M)
The reaction quotient is given as:
![Q=\frac{[NOBr]^2}{[NO]^2[Br_2]}=\frac{(9.56\times 10^{-2} M)^2}{(2.69\times 10^{-2} M)^2\times 3.85\times 10^{-2} M}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNOBr%5D%5E2%7D%7B%5BNO%5D%5E2%5BBr_2%5D%7D%3D%5Cfrac%7B%289.56%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%7D%7B%282.69%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%5Ctimes%203.85%5Ctimes%2010%5E%7B-2%7D%20M%7D)


The reaction will go in backward direction in order to achieve an equilibrium state.
1. In order to reach equilibrium NOBr (g) must be produced. False
2. In order to reach equilibrium K must decrease. False
3. In order to reach equilibrium NO must be produced. True
4. Q. is less than K . False
5. The reaction is at equilibrium. No further reaction will occur. False
Answer:
A. Metallic bond
Explanation:
Think about it: copper and tin are both common metals. That's how we know it's a metallic bond!
Why not B: Covalent bonds are between two nonmetals.
Why not C: Ionic bonds are between a nonmetal and a metal.
Why not D: Paired bond isn't a common phrase in chemistry.
511.2 grams of chlorine gas consumed (with excess H-) when
1,342.0 kJ of energy is released from the system.
<h3>
</h3><h3>
What is an exothermic reaction?</h3>
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative."
Given that 1 mole of chlorine releases -184.6 energy.
Then, we have to find the number of moles of chlorine when 1,342.0 kJ of energy is released from the system.
So, calculating number of moles of chlorine.
Moles = 
Moles = 7.2 mole
Now, calculating number mass of chlorine.

Mass = 7.2 mole x 71 g/mole
Mass = 511.2 gram
Learn more about exothermic reaction here:
brainly.com/question/10373907
#SPJ1