Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
1)Reactants
2)Light
3)An item that can increase reaction rates
4)Reactants must collide with each other
Less molecules lower the chance for collisions
The more collisions there are the higher the reaction rate
A physical change is any change in a substances form that does not change its chemical makeup. Examples of physical changes are breaking a stick or melting ice. A chemical change occurs when atoms of a substance are rearranged, and the bonds between the atoms are broken or formed. HOPE THIS HELPS!!
Answer:
Dolphins use a method called echolocation to detect things such as obstacles and prey in the water. If a dolphin swimming in seawater at 25°C sends a 220-dB click with a frequency of 120.0 Hz, and then detects the reflection of the click exactly one-twentieth of a second later, approximately how far away is the object?