Answer:
0.043 M
Explanation:
The reaction that takes place is:
- Ca(OH)₂ + 2HCl → CaCl₂ + 2H₂O
First we <u>calculate how many HCl moles reacted</u>, using the <em>given concentration and volume required to reach the equivalence point</em>:
- 0.029 M HCl * 37.3 mL = 1.0817 mmol HCl = 1.0817 mmol H⁺
As 1 mol of H⁺ reacts with 1 mol of OH⁻, in the 25.0 mL of the Ca(OH)₂ sample there are 1.0817 mmoles of OH⁻.
With that in mind we can <u>calculate the hydroxide ion concentration in the original sample solution</u>, using <em>the calculated number of moles and given volume</em>:
- 1.0817 mmol OH⁻ / 25.0 mL = 0.043 M
Answer:
the original concentration of A = 0.0817092 M
Explanation:
A reaction is considered to be of first order it it strictly obeys the graphical equation method.

where;
k = the specific rate coefficient = 3.4 × 10⁻⁴ s⁻¹
t = time = 5.0 h = 5.0 × 3600 = 18000 seconds
a = initial concentration = ???
a - x = remaining concentration of initial concentration at time t = 0.00018 mol L⁻¹







a = 0.0817092 M
Thus , the original concentration of A = 0.0817092 M
False because when a substance changes from one state of matter to another it is a physical change no matter how many states of matter it skips
And a water molecule, this is called a dehydration synthesis. when 2 molecule combine, a water molecule leave.
Answer:
The answer is True
Explanation:
I got it right on my quiz, hope this helps!