The value of p+q = 403,For the given complex number a+bi and
where p and q are co-primes
F(z)= (a+ib)z⇒this is equidistant from "0" and "z"
Given modulus of complex number (a+ib) = 10 ;
p and q ∈Z
G.C.D of ( p and q)=1
(a+ib)z equidistant from "0" and "z"


p = 399 and q= 4
p+q= 399+4
p+q=403
Hence the value of p+q = 403
Complete question:A function f is defined on the complex number by f (z) = (a + bi)z, where 'a' and 'b' are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that |a+bi|=8 and that
where p and q are coprime. Find the value of (p+q)
Learn more about complex numbers here:
brainly.com/question/20566728
#SPJ4
Answer:
8f8f8f7xuxifix8d8s7s6sya7s6a6a
You can observe that angle 1 and angle with 47° are inside a parallelogram.
Consider that the sum of the internal angles of a parallelogram is 360°.
Moreover, consider that the angle at the top right of the parallogram is congruent with the angle of 47°, then, such an angle is if 47°.
Consider that angle down right side is congruent with angle 1, then, they have the same measure.
You can write the previous situation in the following equation:
47 + 47 + ∠1 + ∠1 = 360 simplify like terms
94 + 2∠1 = 360 subtract both sides by 94
2∠1 = 360 - 94
2∠1 = 266 divide by 2 both sides
∠1 = 266/2
∠1 = 133
Hence, the measure of angle 1 is m∠1 = 133°
110 minus 52 is 58 so the answer would be 58 more pitches
0.0094% error
Divide 150/141. You get 0.94, then you need to find the percentage of that by clicking the percent button of your calculator