Answer:
-2? if wrong im sorry please tell me what I did that was incorrect ty Explanation:
The answer is C.
The vast difference in electronegativity of the oxygen and hydrogen in water, the O-H bond is polar.
Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
Answer:
The elements in same period have same principle quantum number or energy shell.
The elements in same group shows similar chemical and properties.
Explanation:
Inn group:
The elements in same group i.e present in vertical column shows similar chemical properties.
The elements in same group having same number of valance electrons. while in chemical reaction bonds are break and formed and valance electrons are involved. That's why elements in same group having same number of valance electrons and shows similar chemical properties.
In period:
While as we move from left to right the number of valance electron increase by one in every element. But the electron is added in same shell which means that their physical and chemical properties are different but principal quantum number is same.
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>