Answer:
There is a mass of 154 Grams of Carbon Dioxide.
Explanation:
One mole is equal to 6.02 × 10^23 particles.
This means we have 1.05 X 10^24 total particles of Ethane.
Each ethane particle contains 2 carbon atoms.
If every particle of ethane is burned, we will end up with 2.10 x 10^24 molecules of Carbon Dioxide (Particles of Methane x 2, since each Methane particle contains 2 carbon atoms)
Carbon Dioxide has a molar mass of 44.01 g/mol
So if we take our amount of Carbon Dioxide molecules and divide it by 1 mole, ((2.10 x 10^24)/(6.02 x 10^23) = 3.49) we find that we have 3.49 moles of Carbon Dioxide.
Now all we need to do is multiply our moles of carbon dioxide(3.49) by it's molar mass(44.01) while accounting for significant digits.
What you should end up with is 154 Grams of Carbon Dioxide.
Hope this helps (And more importantly I hope I didn't make any errors in my math lol)
As a side note this is all assuming that this takes place at STP conditions.
There are four states of matter, solid, liquid, gas and plasma. Their formation is as when solid is heated it converts into liquid, liquid on heating converts into gases and gases on heating converts into plasma.
Plasma:
Plasma is the fourth state of matter. It is the highest energy state of matter.
Composition:
Plasma is made up of negatively charged and positively charged particles.
Result:
The answer to your question is Plasma.
Answer:
Sodium bicarbonate
Explanation:
Sodium bicarbonate ( NaHCO₃ ) -
Sodium bicarbonate , according to the IUPAC nomenclature , its name is sodium hydrogen carbonate ,and in common terms also refereed to as baking soda .
It is a white crystalline solid , it is basic in nature .
<u>The cation and anion of this salt are the sodium ion ( Na⁺) and the anion bicarbonate anion (HCO³⁻) .</u>
<u />
<span>Use descriptive axis labels and legends
</span>