The structures shown are examples of Constitutional Isomer.
In Chemistry, an isomer refers to a molecule that is similar to another but has differences. These differences can be:
- A difference in the constitution: The molecules have the same formula but the connectivities between elements or arrangement is different.
- Arrangement in space: The molecules have the same formula and connectivity, but they look different to do an arrangement in space of a position.
The molecules shown have the same formula because the elements in each pair are the same. However, the way these elements are connected is slightly different because the Br and the CH3 are connected to different carbons.
Based on this, the difference is the connectivity or constitution, and therefore these are constitutional isomers.
Learn more in: brainly.com/question/17125223
The molar volume of a gas at STP occupies <u>22.4 L.</u>
Option D
<u>Explanation:</u>
To find the volume of 1 mole of a gas at STP, we use the Ideal Gas Law. It is the general gas equation which gives the relation to the measurable quantities to an ideal gas as below,
P (pressure) × V (volume) = n (number of moles) × R (the gas constant) × T (temperature in Kelvin)
STP = 1 atm of pressure and 273 K for temperature
P = 1 atm
V = ?
n = 1 mole
R = 0.0821 atm L/mol K
T = 273 K
Using the equation,


By substituting the above values, in the equation,

V = 22.38 L
Answer:
2 i think should be the correct answer
Explanation:
Answer:
B. the same as the concentration gradient for Na+
Explanation:
The net electrochemical gradient movement of potassium is to move into the cytoplasm of the cell, and the net electrochemical gradient of sodium is to move into the extracellular fluid. There is an overall negative net charge inside the cell than compared to the outside because of this