Filtration can be used to separate an insoluble solid from a liquid, or a precipitate from the reaction mixture in which it formed. The solid which collects in the filter paper<span> is called the residue. The clear liquid which passes through the </span>filter paper<span> is called the filtrate.</span>
Answer:
It is important to identify it because the two types of crust are made up of two different types of rock
Explanation:
Hope i helped you
Answer:
The answer to your question is: letter A
Explanation:
A combination reaction is when there are two reactants that gives only one product.
a. 2SO2 + O2—> 2SO3 This is a combination reaction,
2 reactants gives one product.
b. Zn + Cu(NO3)2–>Zn(NO3)2 + Cu This is not a combination reaction,
it's a single replacement reaction.
c. 2H2O2–> 2H2O+O2 This is a decomposition reaction
d. AgNO3 + NaCl → AgCl+NaNO3 THis is a double replacement reaction.
Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]