Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
I’m not sure if there was important information in the question before this one, but the answer based on the info I have is B.
The density of water is 1kg/L. Since the density of the block is less, it will float.
B is true because liquids are still more compact than gases, although they are loose, they aren't completely free. They also don't have a definite volume, making them assume the shape of their container. As for compression, liquids are harder to compress compared to gases.
The answer is atoms good luck