Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
Answer:
Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be beneficial to define the terms that describe the process and related properties. ... Elevation of the boiling point with an increase in external pressure, while important in cooking and sterilizing food or utensils, is less important in distillation.
Explanation:
Answer:
Only 3 is correct.
Explanation:
The crystal of a metal or an ionic compound is called a cell, and there are 7 types of unit cells: cubic, tetragonal, orthorhombic, monoclinic, hexagonal, rhombohedral, and triclinic.
In a face-centered cubic cell (FCC) all angles are 90º and all lengths are equal. Each cubic cell has 8 atoms in each corner of the cube, and that atom is shared with 8 neighboring cells. So for a metal crystal, the atom is located at each of the eight lattice points, where it is shared equally between eight unit cells.
Answer:
0.641 moles of ethane
Explanation:
Based on the equation:
C2H6(g) + 7/2O2(g) → 2CO2(g) + 3H2O(l)
We can determine ΔH of reaction using Hess's law. For this equation:
<em>Hess's law: ΔH products - ΔH reactants</em>
ΔH = {2ΔHCO2 + 3ΔHH2O} - {ΔHC2H6}
<em>Pure monoatomic substances have a ΔH = 0kJ/mol; ΔHO2 = 0kJ/mol</em>
<em />
ΔH = {2*-393.5kJ/mol + 3*-285.8kJ/mol} - {-84.7kJ/mol}
ΔH = -1559.7kJ/mol
That means when 1 mole of ethane is in combustion there are released 1559.7kJ of heat. To produce 1.00x10³kJ there are needed:
1.00x10³kJ * (1mole ethane / 1559.7kJ) =
<h3>0.641 moles of ethane</h3>