Answer:
x=55
Step-by-step explanation:
x/5=11
11x5=55
x=55
interior angle of a regular 18-gon.
It is easier to calculate the exterior angle of a regular polygon of n-sides (n-gon) by the relation
exterior angle = 360/n
For a 18-gon, n=18, so exterior angle = 360/18=20 °
The value of each interior angle is therefore the supplement, or
Interior angle = 180-20=160 degrees.
Naming of a 9-gon
A polygon with 9 vertices is called a nonagon (in English) or enneagon (French ennéagone, but the English version is sometimes used)
You had a good start with the correct answer.
Exterior angle of a 15-gon
The exterior angle of a 15-gon can be calculated using the relation given in the first paragraph, namely
Exterior angle = 360/15=24 degrees
Answer: 
Step-by-step explanation:
First, we need to find the common denominator
The easiest way to do this is by multiplying the two given denominators, which are 2 and 5.
2 × 5 = 10
So, our common denominator is 10. Then, multiply the numerators of the two fractions by 2 and 5. Here's why:
=
We multiplied the top and bottom by 2 to make sure our new fraction stays equivalent to the original fraction.
Do the same thing for the other one:
= 
Finally, subtract the two fractions to find the difference between the two times:
= 
The reason we used the common denominator is because we can only add or subtract fractions if they have the same denominator.
Answer:
a) Q(-2,1) is false
b) Q(-5,2) is false
c)Q(3,8) is true
d)Q(9,10) is true
Step-by-step explanation:
Given data is
is predicate that
then
. where
are rational numbers.
a)
when 
Here
that is
satisfied. Then

this is wrong. since 
That is 
Thus
is false.
b)
Assume
.
That is 
Here
that is
this condition is satisfied.
Then

this is not true. since
.
This is similar to the truth value of part (a).
Since in both
satisfied and
for both the points.
c)
if
that is
and
Here
this satisfies the condition
.
Then 
This also satisfies the condition
.
Hence
exists and it is true.
d)
Assume 
Here
satisfies the condition 
Then 
satisfies the condition
.
Thus,
point exists and it is true. This satisfies the same values as in part (c)