The properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
<h3>What is specific heat capacity?</h3>
The specific heat capacity is the property of a substance that shows how much its temperature changes when it is exposed to heat.
Thus, the properties which keep the water temperature from changing much are;
- water's high specific heat capacity
- the large mass of water
Missing parts:
A red-hot iron nail is immersed in a large bucket of water. Although the nail cools down sufficiently to be held bare-handed, the temperature of the water barely increases. Which properties keep the water temperature from changing much?
A.) water's high heat conductivity
B.) water's high specific heat capacity
C.) the iron nail's high heat conductivity
D.) the large mass of water
E.) the iron nail's high specific heat capacity
Learn more about heat capacity:brainly.com/question/12244241
#SPJ1
First, we need to be aware that our blood is also a form of liquid.
So, when the astronaut is placed in within the environment that has decreased pressure, the temperature inside the astronaut's body will definitely increase but it won't cause the boiling effect like in water (it won't even break the arteries). But it could endanger the astronaut's life because it makes the blood unable to circulate properly due to unstable blood pressure
Answer:
it's the chloroplast but I'm not sure which on is it it might be the F.
The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
<h2>
Answer: 125.41 mL</h2>
Explanation:
Volume = mass ÷ density
= 116 g ÷ 0.925 g/mL
= 125.41 mL
<h3>A 116 g of sunflower oil of 0.925 g/mL has a volume of 125.41 mL.</h3>