There are 100 degrees between the freezing (0°) and boiling points (100°) of water on the Celsius scale and 180 degrees between the similar points (32° and 212°) on the Fahrenheit scale.
Problem: Two scientists are doing an experiment designed to identify the boiling point
Answer: 250°F is the higher temperature by 2°F
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
Complete Question:
Suppose a cobalt atom in the +3 oxidation state formed a complex with two bromide (Br-) anions and four ammonia (NH3) molecules. write the chemical formula of this complex.
Answer:
[Co(NH₃)₄]⁺Br₂
Explanation:
The cobalt atom with +3 oxidation is represented as Co⁺³, and if it's bonded to two bromide ions, and four ammonia molecules. The molecules that are bonded to the metal atom (Co) are called complexing agents.
In the representation, we first put the molecules that surround the metal atom, forming an anion with the oxidation of the metal:
[Co(NH₃)₄]⁺³
Then, the ions are put in the formula. Because there are two bromides ion, each one with 1 minus charge, only 2 plus charged will be neutralized, and the complex will be:
[Co(NH₃)₄]⁺Br₂
Answer:
1. The balanced equation is given below:
C4H6O3 + H2O → 2C2H4O2
The coefficients are: 1, 1, 2
Explanation:
C4H6O3 + H2O → C2H4O2
The above equation can be balanced as follow:
There are 4 atoms of C on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of C2H4 O2 as shown below:
C4H6O3 + H2O → 2C2H4O2
Now, the equation is balanced as the number of atoms of the different elements present on both sides of the equation are equal.
The coefficients are: 1, 1, 2