1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

Find the value of x in the following figure

Mathematics
1 answer:
tiny-mole [99]3 years ago
3 0

Answer:

8

Step-by-step explanation:

You might be interested in
For an oxidation reaction, the temperature T required is warmer than 50°C. Complete the following inequality by dragging the cor
Elden [556K]

Answer:

t<50.c I think if I read right

3 0
3 years ago
Read 2 more answers
Giles made baklava to serve at a party. He cut it into parallelogram-shaped pieces with the dimensions shown below Whoever gets
Nana76 [90]

Answer:

B

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
Given the function, f(x)=lx+1l+2 , choose the correct transformation.
Wewaii [24]

moves left 1 unit and up tow units any thing on the inside of the brackets means it will move left or right + menas left - means right on the outside it will move up or down - menas down + means up


6 0
3 years ago
-12x+ 16 = 100<br> what is the value for x in this equation?
AveGali [126]

Answer: X= -7

Step-by-step explanation: A negative time a negative is a positive so -12x-7 is equal to 84. 84 plus 16 is equal too 100.

7 0
4 years ago
Other questions:
  • The table shows the wavelength of the sound produced by keys on a piano x keys away from the A above middle C.
    5·1 answer
  • The point Q (5,3) is translated 2 units left. What are the coordinates of the resulting point Q
    7·2 answers
  • 10 = 2 - 4(ax - 3) solve the following equation for x
    12·2 answers
  • To make 1c1/2 dozen muffins, a recipe uses 3 1/2 cups of flour. How many cups of flour are needed for every dozen muffins made?
    15·1 answer
  • A stick 7 inches long is broken into two pieces so that one piece is twice as long as the other one. How long are the two pieces
    8·1 answer
  • What are the three plot points and is it over the x-axis or y-axis
    9·2 answers
  • 8x8-5x20<br><br> 12<br> 45<br> 64<br> -36<br> -15<br> -10
    12·2 answers
  • Please help asap! Please don’t get it wrong! xoxo
    10·1 answer
  • Find the sum of all the even numbers between 70 and 80​
    15·1 answer
  • If a pentagon has a radius of 16 find the perimeter
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!