Answer:
physical
Explanation:
physical is physical yes.yes because wkwkwkwkwkwkwkwkkwkwkwkwkkwkkwkwkwkwkwkwkwkwkkwkwkwkwkwkwkwkkwkwkwkwkwk
Answer:
5.73kg
Explanation:
Given data
Height = 8m
Potential Energy = 450J
Required
The mass of the object
From the following expression
PE=mgh
we can substitute g= 9.81m/s^2 and the other parameters to get mass m
450= m*9.81*8
450= m* 78.48
m= 450/78.48
m= 5.73kg
Hence the mass is 5.73kg
Answer:
(a) Friction force = 50 N
(b) Work done by friction = 300 j
(c) Net work done = 0 j
Explanation:
We have given that the box is pulled by 6 meter so d = 6 m
Force applied on the box F = 60 N
We have have given that velocity is constant so acceleration will be zero
So to applied force will be utilized in balancing the friction force
So friction force 
Work done by friction force 
Work done by applied force 
So net work done = 300-300 = 0 j
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the object is 
The unstressed length of the string is 
The length of the spring when it is at equilibrium is 
The initial speed (maximum speed)of the spring when given a downward blow 
Generally the maximum speed of the spring is mathematically represented as

Here A is maximum height above the floor (i.e the maximum amplitude)
and
is the angular frequency which is mathematically represented as

So

=> 
Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as

=> 
=> 
Generally at equilibrium position the net force acting on the spring is

=> 
=> 
So

=> 
The Moment of Inertia of the Disc is represented by
. (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- Moment of inertia of the Disk.
- Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (
):


And the resulting equation is:



The moment of inertia of the Disc is represented by
. (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709