A) Rubber stops charges from flowing. This protects people by stopping electricity from flowing.
Explanation:
The statement that best describes the point of wrapping rubber around the copper wire is that the rubber stops charges from flowing. This prevents people from getting electrical shocks by stopping the flow of electricity.
- A rubber is an insulator.
- Insulators are substances that prevents the flow of electricity.
- The lack free mobile electrons or ions that makes them conductors.
- When they are wrapped round a conductor such as copper wire, they will halt the flow of charges.
- Copper is a conductor of both heat and electricity. It has free mobile electrons.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
Answer:
Roles and responsibilities
Explanation:
Definition of safety plan:
"A Safety Plan is a written document that describes the process for identifying the physical and health hazards that could harm workers, <em>procedures to prevent accidents</em>, and steps to take when accidents occur. Written safety plans can be comprehensive, such as an injury and illness prevention program, or they can be specific to a particular activity, hazard, or piece of equipment. The written safety plan is your blueprint for keeping workers safe."
Alternative definition
"What is an OSHA Safety Plan? An OSHA Safety Plan is a written plan that describes the potential hazards in the workplace, <u><em>and the company policies</em></u>, controls, and <u><em>work practices</em></u> used to minimize those hazards."
elements of a safety plan:
Basic Safety Plan Elements
Policy or goals statement
<u><em>List of responsible persons</em></u>
Hazard identification
<em>Hazard controls and safe practices</em>
<em>Emergency and accident response</em>
Employee training and communication
<em>Recordkeeping</em>
I say roles and responsibilities because it makes sense that if it's your responsibility and possibly something that could be dangerous -- hence a safety plan -- you would have to sign it before working. I hope this helps!
Answer:
A charge of -5.02 nC is uniformly distributed on a thin square sheet of nonconducting material of edge length 21.8 cm. "What is the surface charge density of the sheet"?
Explanation:
Surface charge density is a measure of how much electric charge is accumulated over a surface. It can be calculated as the charge per unit area.
We will convert all parameters in SI units.
Charge = Q = -5.02nC
Q = -5.02×
C
As it is clear from question that Sheet is a square (All sides will be of equal length)
Area = A = (21.8×
m) (21.8×
m) = 4.75×
m²
A = 4.75×
m²
Surface charge density = Q/A
Surface charge density = (-5.02×
C)/(4.75×
m²)
Surface charge density = -1.057×
C
Answer:
yeah
Explanation:
as wavelength increases frequency decreases and it goes the same for the opposite way
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity