Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
Answer: Formula for Acceleration Due to Gravity
These two laws lead to the most useful form of the formula for calculating acceleration due to gravity: g = G*M/R^2, where g is the acceleration due to gravity, G is the universal gravitational constant, M is mass, and R is distance.please mark as brainliest
Explanation:
True clicking the office button and then clicking new would display the new document.
Answer: Diagram B
Explanation:
A free body diagram shows the forces acting on an object in a certain scenario.
In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.
The diagram depicting this is diagram B.
Answer:
Explanation:
same idea as before Liam, first, find the parallel resistance in 35 || 20
(35*20) / (35+20) = 700 / 55 = 12.727272 ohms
now add the 12.727272 + 15 = 27.727272 ohms total resistance
V = IR
10 = I * 27.727272
10 / 27.727272 = I
0.360655 = I
V = IR (again, but across the 15 ohm resistor)
V = 0.360655 * 15
V = 5.4098