Answer:
F = - 3.53 10⁵ N
Explanation:
This problem must be solved using the relationship between momentum and the amount of movement.
I = F t = Δp
To find the time we use that the average speed in the contact is constant (v = 600m / s), let's use the uniform movement ratio
v = d / t
t = d / v
Reduce SI system
m = 26 g ( 1 kg/1000g) = 26 10⁻³ kg
d = 50 mm ( 1m/ 1000 mm) = 50 10⁻³ m
Let's calculate
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
With this value we use the momentum and momentum relationship
F t = m v - m v₀
As the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26 10⁻³ (-500 - 630) / 8.33 10⁻⁵
F = - 3.53 10⁵ N
The negative sign indicates that the force is exerted against the bullet
Scientists measure the time between the arrival of an earthquake's __P____ and ___S____ waves to help determine the distance between the recording seismograph and the earthquake epicenter.
Explanation:
P- (compressional) and S- (shear) waves produced in earthquakes travel at different speeds. P waves are faster than S waves and hence will be detected first by a seismograph after an earthquake. The further away a seismograph is from the epicenter of an earthquake, the longer the time difference between the two (2) waves will be.
Using several, at least 3, seismographs located at different geoghraphical locations and detecting earthquakes, geologists can extrapolate the epicenter of an earthquake using the time differences in arrivals of the two waves in each of the seismographs, using the mathematics of triangulation.
Learn More:
For more on P- and S-- waves check out;
brainly.com/question/11915788
brainly.com/question/11334414
brainly.com/question/2530620
#LearnWithBrainly
I believe that the answer to this would be B
Hope this helped