is the potential energy of the ball as it is half way through the fall, 20 meters high
<u>Explanation:</u>
Given data:
Height of the fall = 20 m
Given that the body is half-way through the fall, it is at above the ground 10 m

We need to find its potential energy (P.E)
Energy due to the body’s position is referred as potential energy. It means the energy when body is at rest. It can be expressed as below,

Where
m – The body’s mass
g - Acceleration due to gravity 
h - Height of the body
By substituting the given values, we get

Since the mass is not provided, just kept it.
Answer:The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. ... The carbon atom changes from a solid structure to a gas but its mass does not change. Similarly, the law of conservation of energy states that the amount of energy is neither created nor destroyed.
Explanation:
N₀ is the number of C-14 atoms per kg of carbon in the original sample at time = Os when its carbon was of the same kind as that present in the atmosphere today. After time ts, due to radioactive decay, the number of C-14 atoms per kg of carbon is the same sample which has decreased to N. λ is the radioactive decay constant.
Therefore N = N₀e-λt which is the radioactive decay equation,
N₀/N = eλt In (N₀.N= λt. This is the equation 1
The mass of carbon which is present in the sample os mc kg. So the sample has a radioactivity of A/mc decay is/kg. r is the mass of C-14 in original sample at t= 0 per total mass of carbon in a sample which is equal to [(total number of C-14 atoms in the sample at t m=m 0) × ma]/ total mass of carbon in the sample.
Now that the total number of C-14 atoms in the sample at t= 0/ total mass of carbon in sample = N₀ then r = N₀×ma
So N₀ = r/ma. this equation 2.
The activity of the radioactive substance is directly proportional to the number of atoms present at the time.
Activity = A number of decays/ sec = dN/dt = λ(number of atoms of C-14 present at time t) =
λ₁(N×mc). By rearranging we get N = A/(λmc) this is equation 3.
By plugging in equation 2 and 3 and solve t to get
t = 1/λ In (rλmc/m₀A).
A semiconductor conducts electricity at high temperatures, but not at low temperatures. At high temperatures, metalloids act like metals and conduct electricity.
Explanation:
start using quizlet. it has every anwser
Answer:
There are 77 millimoles of nitric acid present in 35.0 mL of a 2.20 M solution
Explanation:
Molarity of the solution = 2.20 M

Therefore, there are 77 millimoles of nitric acid present in 35.0 mL of a 2.20 M solution