Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.
Answer:
answer is A. a saturated hydrocarbon that has more than 35 carbons in its chain
Explanation:
edge in 2020 :)
Answer:
94.4g/mol is molar mass of the unknown
Explanation:
Based on the freezing point depression equation:
ΔT = Kf*m*i
<em>Where ΔT is the depression in freezing point (1.87°C)</em>
<em>Kf is freezing point depression constant of water (1.86°Ckg/mol)</em>
<em>And i is Van't Hoff factor (1 for nonelectrolyte solutes)</em>
<em />
Replacing:
1.87°C = 1.86°CKg/mol*m*i
1.005mol/kg solvent = m
Using the mass of the solvent we can find the oles of the nonelectrolyte:
1.005mol/kg solvent * 0.4764kg = 0.479moles
Molar mass is defined as the ratio between mass of a substance in grams and moles, that is:
45.2g / 0.479mol =
<h3>94.4g/mol is molar mass of the unknown</h3>
The answer is (kg) Kilogram
TBH i dont know but can you give advice to get more points on this site