So it is asking you to group like term so
x terms can be grouped/added/subtracted to other x terms, but not to x^2 or x^3 terms
x^2 terms to x^2 and so on so
1. 9-3k+5k=
9+(5k-3k)=
9+2k
2. k^2+2k+4k=
k^2+(2k+4k)=
k^2+6k=
2x=3-y so collect the likes term which is xy= 3\2
We need to expand the square binomial and then multiply:
<span>3x(x + 3)^2
= 3x(x + 3)</span>(x + 3<span>)
= 3x(x^2 + 6x + 9)
= 3x^3 + 18x^2 + 27x</span>
This looks like scalar matrix multiplication. The idea here is to multiply the scalar 3 by each item inside the matrix.
Doing so leads to the answer [3 -12 15 -21]
Side note: I'm assuming the matrix given to you has 1 row and 4 columns.
Answer: The ratio is 2.39, which means that the larger acute angle is 2.39 times the smaller acute angle.
Step-by-step explanation:
I suppose that the "legs" of a triangle rectangle are the cathati.
if L is the length of the shorter leg, 2*L is the length of the longest leg.
Now you can remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
Then there is one acute angle calculated as:
Tan(θ) = (shorter leg)/(longer leg)
Tan(φ) = (longer leg)/(shorter leg)
And we want to find the ratio between the measure of the larger acute angle and the smaller acute angle.
Then we need to find θ and φ.
Tan(θ) = L/(2*L)
Tan(θ) = 1/2
θ = Atan(1/2) = 26.57°
Tan(φ) = (2*L)/L
Tan(φ) = 2
φ = Atan(2) = 63.43°
Then the ratio between the larger acute angle and the smaller acute angle is:
R = (63.43°)/(26.57°) = 2.39
This means that the larger acute angle is 2.39 times the smaller acute angle.