Answer:

Explanation:
a) Fundamental frequency
A harmonic is an integral multiple of the fundamental frequency.


b) Wave speed
(i) Calculate the wavelength
In a fundamental vibration, the length of the string is half the wavelength.

(b) Calculate the speed
s



Answer:
Iron deficiency
Explanation:
or more scientifically explained as decreased hemoglobin levels in your blood but still caused by lack of iron.
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

Vectors are used to represent physical magnitudes that have an associated address. For example, if we want to represent the displacement of an object, it is not enough to describe only the distance as 10 meters, it is also necessary to describe in which direction the displacement occurred, for example, 30 ° towards the northeast.
Therefore the vectors are measured in one or several dimensions that include a magnitude and an address.
The correct option is the last:
"<em>a measurement in more than one dimension that includes a magnitude and a direction</em>"
Explanation:
Given:
v₀ = 0 m/s
a = 3 m/s²
t = 4 s
Find: Δx and v
Δx = v₀ t + ½ at²
Δx = (0 m/s) (4 s) + ½ (3 m/s²) (4 s)²
Δx = 24 m
v = at + v₀
v = (3 m/s²) (4 s) + 0 m/s
v = 12 m/s