Hi there!
We must begin by converting km/h to m/s using dimensional analysis:

Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
Answer:
Potential difference though which the electron was accelerated is 
Explanation:
Given :
De Broglie wavelength , 
Plank's constant , 
Charge of electron , 
Mass of electron , m=9.11\times 10^{-31}\ kg.
We know , according to de broglie equation :

Now , we know potential energy applied on electron will be equal to its kinetic energy .
Therefore ,

Putting all values in above equation we get ,

Hence , this is the required solution.
Answer:
by measuring calender we can find
Explanation:
Answer:
-1
Explanation:
Electrons have a negative charge and protons have a positive charge. (+11) + (-12) = -1
Answer:
3.44 W/m²
1.134 J
Explanation:
E₀ = Intensity of electric field = 50.9 V/m
I = Intensity of electromagnetic wave
Intensity of electromagnetic wave is given as
I = (0.5) ε₀ E₀² c
I = (0.5) (8.85 x 10⁻¹²) (50.9)² (3 x 10⁸)
I = 3.44 W/m²
A = Area = 0.0277 m²
t = time interval = 11.9 s
Amount of energy is given as
U = I A t
U = (3.44) (0.0277) (11.9)
U = 1.134 J