Answer:
t_total = 23.757 s
Explanation:
This is a kinematics exercise.
Let's start by calculating the distance and has to reach the limit speed of
v = 18.8 m / s
v = v₀ + a t₁
the elevator starts with zero speed
v = a t₁
t₁ = v / a
t₁ = 18.8 / 2.40
t₁ = 7.833 s
in this time he runs
y₁ = v₀ t₁ + ½ a t₁²
y₁ = ½ a t₁²
y₁ = ½ 2.40 7.833²
y₁ = 73.627 m
This is the time and distance traveled until reaching the maximum speed, which will be constant throughout the rest of the trip.
x_total = x₁ + x₂
x₂ = x_total - x₁
x₂ = 373 - 73,627
x₂ = 299.373 m
this distance travels at constant speed,
v = x₂ / t₂
t₂ = x₂ / v
t₂ = 299.373 / 18.8
t₂ = 15.92 s
therefore the total travel time is
t_total = t₁ + t₂
t_total = 7.833 + 15.92
t_total = 23.757 s
the answer for the question is D. all of the above
The process by which the heat energy is transmitted between the atoms or molecules is known as conduction.
Explanation:
Conduction is the transfer of heat through the material that are caused by temperature gradient with the material ends in heat flux. The heat transfer done by movement and mixing of a fluid is known as convection.
If a fluid is taken and it is kept as stationary. If there is a temperature gradient across that fluid, there would be transfer of heat that occurs in the fluid. It is negligible when compared to convective heat transfer.
Because of the heat transfer from solid to solid, density of liquid changes and start to move in upward direction due to low density. This type of motion is known as convection currents.
I believe it is, All of the above.
Answer:
288.0 units; that is the electrostatic force of attraction become quadruple of its initial value.
Explanation:
If all other parameters are constant,
Electrostatic Force of attraction ∝ (1/r²)
F = (k/r²) = 72.0
If r₁ = r/2, what happens to F₁
F₁ = (k/r₁²) = k/(r/2)² = (4k/r²) = 4F = 4 × 72 = 288.0 units