Check the picture below.
Make sure your calculator is in Degree mode.
Answer:
Step-by-step explanation:
As per Janayda,
From the figure attached,
In ΔTRQ,
m∠TRQ + m∠RQT + m∠QTR = 180°
25° + m∠RQT + 35° = 180°
m∠RQT = 180° - 60°
m∠RQT = 120°
Since, m∠RQT + m∠PQT = 180° [Linear pair of angles]
m∠PQT = 180° - m∠RQT
= 180° - 120°
= 60°
In right angled triangle TPQ,
m∠TPQ + m∠PQT + m∠PTQ = 180°
90° + 60° + m∠PTQ = 180°
m∠PTQ = 180° - 150°
= 30°
Similarly, other angles can also be evaluated from the given information.
In ΔQTP and ΔNTP,
TP ≅ TP [Reflexive property]
NP ≅ PQ [Given]
ΔQTP ≅ ΔNTP [By LL postulate for congruence]
Therefore, Janayda is correct.
While Sirr is incorrect.
Since, there is not the enough information to prove ΔRTQ and ΔMTN equal, Isabelle is incorrect.
Answer:
The error E = ± 4.04 %
Step-by-step explanation:
Solution:-
- The sample data is used to estimate the population proportion ( p ).
- The success p^ = success percentage = 40 %
- The confidence interval CI = 98%
- The sample size n = 800
- The margin of error E:
- The margin of error "E" for estimation of population proportion ( p ) is given by:

Where, Z-critical value is defined by the significance level:
P ( Z < Z-critical ) = α / 2
Where, α : Significance level
α = 1 - CI
P ( Z < Z-critical ) = (1 - 0.98) / 2
P ( Z < Z-critical ) = 0.01
Z-critical = 2.33
- The error E of estimation is:

- The error E = ± 4.04 %