1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
6

Find the horizontal asymptote for each function and tell the reason for your answer.

Mathematics
1 answer:
madreJ [45]3 years ago
6 0

Answer:

Thanks for the free points dear

You might be interested in
Look at the graph below.<br> What is the slope of the line?<br> OA. 5<br> OB. -5<br> oc. 1<br> OD. -
Elena-2011 [213]
The answer is: C. 1/5
5 0
3 years ago
Solve m = 10x - x for x
Fudgin [204]

Answer:

X = M/9

Step-by-step explanation:

3 0
3 years ago
Find x Find y, the Find z​
Simora [160]

Answer:

x = 77

y = 58

z = 122

Step-by-step explanation:

I used the Isosceles Triangle Theorem and other theorems to solve.

I hope this helps!

6 0
2 years ago
A 50-gal tank initially contains 10 gal of fresh water. At t = 0, a brine solution
scZoUnD [109]

\huge \mathbb{SOLUTION:}

\begin{array}{l} \textsf{Let }A(t)\textsf{ be the function which gives the amount} \\ \textsf{of the salt dissolved in the liquid in the tank at} \\ \textsf{any time }t. \textsf{ We want to develop a differential} \\ \textsf{equation that, when solved, will give us an} \\ \textsf{expression for }A(t). \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \end{array}

\boxed{ \footnotesize \begin{array}{l} \qquad\quad \quad\Large{\dfrac{dA}{dt} = R_{in} - R_{out}} \\ \\ \textsf{where:} \\ \\ \begin{aligned} \bullet\: R_{in} &= \textsf{rate of the salt entering} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \\ \\ \bullet\: R_{out} &= \textsf{rate of the salt leaving} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{aligned} \end{array}} \\ \\

\begin{array}{l} \textsf{On the problem, the amount of salt in the tank,} \\ A(t), \textsf{changes overtime is given by the differential} \\ \textsf{equation}  \\ \\ \footnotesize A'(t) = \left(\dfrac{4\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{1\ \textsf{lb}}{1\ \textsf{gal}}\right) - \left(\dfrac{2\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{A(t)\ \textsf{lb}}{10 + (4 - 2)t\ \textsf{gal}}\right) \\ \\ \textsf{There's no salt in the tank (fresh water) at the} \\ \textsf{start, so }A(0) = 0. \textsf{ The amount of solution in the} \\ \textsf{tank is given by }10 + (4 -2)t, \textsf{so the tank will} \\ \textsf{overflow once this expression is equal to the total} \\ \textsf{volume or capacity of the tank.} \\ \\ 10 + (4 - 2)t = 50 \\ \\ \textsf{Solving for }t,\textsf{ we get} \\ \\ \implies \boxed{t = 20\textsf{ mins}} \\ \\ A'(t) = 4 - \dfrac{2A(t)}{10 + 2t} \\ \\ A'(t) = 4 - \dfrac{1}{5 + t} A(t) \\ \\ A'(t) + \dfrac{1}{5 + t} A(t) = 4 \\ \\ \textsf{This is a linear ODE with integrating factor} \\ \mu (t) = e^{\int \frac{1}{5 + t}\ dt} = e^{\ln |5 + t|} = 5 + t \\ \\ \textsf{Multiplying this to the ODE, we get} \\ \\ (5 + t)A'(t) + A(t) = 4(5 + t) \\ \\ [(5 + t)A(t)]' = 20 + 4t \\ \\ (5 + t)A(t) = 20t + 2t^2 + C \\ \\ \textsf{Since }A(0) = 0, \textsf{ we get } C = 0. \\ \\ A(t) = \dfrac{2t^2 + 20t}{t + 5} \\ \\ A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{So the function that gives the amount of salt at} \\ \textsf{any given time }t,\textsf{ is given by} \\ \\ \implies A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{The amount of salt in the tank at the moment} \\ \textsf{of overflow or at }t = 20\textsf{ mins is equal to} \\ \\ A(20) = 2(20) + 10 - \dfrac{50}{20 + 5} \\ \\ \implies \boxed{A = 48\ \textsf{gallons}} \end{array}

\Large \mathbb{ANSWER:}

\qquad\red{\boxed{\begin{array}{l} \textsf{a. }20\textsf{ mins} \\ \\ \textsf{b. }48\textsf{ gallons}\end{array}}}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

5 0
3 years ago
Suppose that out of 1500 first-year students at ICU, 350 are taking history, 300 are taking mathematics, and 270 are taking both
natka813 [3]

Step-by-step explanation:

Assuming that the 350 taking history and the 300 taking math each includes the 270 taking both history and math, then:

N(H or M) = N(H) + N(M) − N(H and M)

N = 350 + 300 − 270

N = 380

There are 380 first-year students taking history or mathematics.

5 0
3 years ago
Other questions:
  • 4.185 divide by 0.93
    12·2 answers
  • Witch proportion can be used to solve the following problem what is 50% of 70
    11·1 answer
  • The temperature in buffalo, New York, one Saturday was 68F. The temperature that following Monday was 80F. Write an equation tha
    10·2 answers
  • Find the missing side length ED Round answe to the nearest tenth please.
    13·1 answer
  • Write the following equation in standard form and show your work : x^2+y^2-22y+96=0
    15·1 answer
  • Neil had $146.82 in his checking account. He deposited $84.27 and wrote a check for $19.12. Then, he wrote another check for $31
    9·1 answer
  • Plz help ASAP need help on this
    13·2 answers
  • Type the correct answer in the box. Use numerals instead of words.
    10·1 answer
  • Ralph plotted the points (-4, 3) and (-4, -3) on a coordinate grid. What is the distance, in units, between the points Ralph plo
    10·2 answers
  • 11. The circumference of Mars is about 10,664 km. Find the diameter of Mars to the nearest km. (1 point)
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!