Answer:
C. hyperbola
Explanation:
From Boyle's law:
PV = k, where k is a constant
Solving for P:
P = k / V
At first glance, this equation doesn't fit any of the options. But when you graph it, you can see that it's actually a <em>rotated</em> hyperbola.
Answer:
The magnitude of the vector clearly doubles if each of its components is doubled.
Explanation:
Explanation:
Wavelength in an emission spectrum,
The energy of an electron is given by :

Where
h is the Planck's constant
c is the speed of light
For 435 nm, the energy of the electron will be :


We know that 
So, 
So, E = 2.86 eV
The energy of the electron dropping from one energy level is 2.86 eV. We know that,

From the given energy levels :

So, the transition must be from E₅ to E₂. Hence, this is the required solution.
Ah hah ! There's an easy way and a hard way to do this one.
If it's OK with you, I'm gonna do it the easy way, and not even
talk about the hard way !
First, let's look at a few things in this question.
-- "gravitational force between a planet and a mass"
This is just a complicated way to say "How much does the mass weigh ?"
That's what we have to find.
-- If we know the mass, how do we find the weight ?
Multiply the mass by the acceleration of gravity there.
Weight = (mass) x (gravity) .
-- Do we know the acceleration of gravity on this dark mysterious planet ?
We do if we read the second line of the question !
It's right there ... 8.8 m/s² .
-- We know the mass. We know gravity. And we know that
if you multiply them, you get the weight (forced of gravity).
I'm pretty sure that you can do the rest of the solution now.
weight = (mass) x (gravity)
Weight = (17 kg) x (8.8 m/s²)
Multiply them:
Weight = 149.6 kg-m/s²
That complicated-looking unit is the definition of a Newton !
So the weight is 149.6 Newtons. That's the answer. It's choice-A.
It's about 33.6 pounds.
When this mass is on the Earth, it weighs about 37.5 pounds.
But when it's on this planet, it only weighs about 33.6 pounds.
That's because gravity is less on this planet. (8.8 there, 9.8 on Earth)
Answer:
When an object changes speed (increases/decreases) it results in acceleration/de acceleration, its velocity also changes.
Explanation:
Acceleration is the rate of change in velocity.An object can accelerate when speed increases, decreases or direction changes. All these instances involves a change in velocity.Velocity is a vector quantity thus it has magnitude and the direction.Acceleration due to change in direction is centripetal acceleration.The expression for finding acceleration is;
a=change in velocity/change in time
a=Δv/Δt in m/s²