Answer:
12
Step-by-step explanation:
Answer:
x= 5/4 this is correct answer hope it helps
Answer:
15 units
Step-by-step explanation:
K(8, 6) and J(-4, -3)
Distance between 2 points

Thus using the formula above,
distance between points J and K
![= \sqrt{ {[8- (-4)]}^{2} + {[6- (-3)]}^{2} } \\ = \sqrt{ {12}^{2} + {9}^{2} } \\ = \sqrt{225} \\ = 15 \: units](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%7B%20%7B%5B8-%20%28-4%29%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B%5B6-%20%28-3%29%5D%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B%20%7B12%7D%5E%7B2%7D%20%20%2B%20%20%7B9%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B225%7D%20%20%5C%5C%20%20%3D%2015%20%5C%3A%20units)
Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Answer:
45q + 35
Step-by-step explanation: