Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

Answer:
The answer is 11N to the right
Explanation:
Because 4N-3N= 1N
Therefore, 12N-1N=11N
The netforce is 11N to the right, because the greatest force is 12N to the right so it is more likely that the object is being pulled to the right.
Answer:
It stays the same.
Explanation:
Entropy of a system either increases or remains constant in any process, it never decreases.
Explanation:
The magnetic force acting on a current carrying wire in a uniform magnetic field is given by :

or

Where
is the angle between length and the magnetic field
The magnetic force is perpendicular to both current and magnetic field. It is maximum when it is perpendicular to both current and magnetic field.
So, the correct options are :
- The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
- .The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
- The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.