Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

I am sitting in my seat.
I am listening to my mp3 and reading my book.
My eyes are getting heavy. They start to close.
I try to stay awake, but it's no use.
I am so warm and comfortable and sleepy,
and I have just finished my dinner.
Finally I can't help it. Resistance is futile.
I give up, and fall deep asleep.
My head rests back against my soft, comfy seat.
My seat is in row 26 on the airplane I'm flying in
to visit my grandmother on the coast.
We are cruising at 560 miles an hour, bearing 280°,
at flight level 320 .
The temperature outside my window is -60°F .
Answer:
(1) A sound wave a mechanical wave because mechanical waves rely on particle interaction to transport their energy, they cannot travel through regions of space that are void of particles. Sound is a mechanical wave and cannot travel through a vacuum. These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave. The answer is(B) it travels in the medium.
(2) An ocean wave is an example of a mechanical transverse wave
The compression is the part of the compressional wave where the particles are crowded together. The rarefaction is the part of the compressional wave where the particles are spread apart. The answer is (C) Compression.
Answer:
The one in the middle
Explanation: i listened to the other person and i got it wrong, this is the answer for edge2020 sience review on energy!!!!
trust me its the middle one!!!!!
And everyone if ur not sure, like 100% sure about an answer dont answer at all cuz for 1: ur taking up a spot for others to answer. for 2: you could make people wrong. And for 3: its annoying. And 4: it makes stuff like this happen!
<u>NOT ARGUEING IM JUST PUTTING MY THOUGHTS AND OPINIONS OUT THERE ;)</u><em> many thanks.</em>