Well, you haven't given us much of a choice of graphs to pick from, have you.
If a sample of an ideal gas is held at constant temperature, then
its pressure and volume are inversely proportional ... the harder
you squeeze it, the smaller the volume gets, and less squeeze
produces more volume.
Actually, the product of (pressure) x (volume) is always the
same number.
The graph of that relationship is all in the first quadrant.
It starts out very high right next to the y-axis, then drops down
toward the x-axis while curving to the right and becoming horizontal,
and ends up trying to get closer and closer to the x-axis but never
actually becoming zero.
Equilibrium<span>-the condition of a system when no observable change is taken place or the kinetic energy is equal. </span>Equilibrium means<span> to stay balanced or equal.</span>
Answer:
If the light were incident upon two polarizers at right angles, no light would get thru - thus each polarizer must block 50% of the light.
One polarizer would allow 50% of the light to pass.
Diffusion<span> is the spread of particles through random motion from regions of high concentration to regions of lower concentration. Because </span>diffusion<span> works without barriers, when </span>smoke<span> is emitted into the air, it can easily travel to surrounding areas. hope this can help you ^_^ </span>
Answer:
A mixture of blue & red light.
Explanation:
During photosynthesis, the oxygen delivered emanates from water particles and if a weighty isotope of oxygen atom was noticed in delivered sub-atomic oxygen, the water atoms were marked with the hefty isotope.
In order to maximize the growth rate of the plant, the required wavelength of light to be used is a mixture of blue & red light. This is on the grounds that as the absorption optima of plant's photoreceptors are at wavelength frequency of red and blue light, subsequently the combination of red and blue light would be ideal for plant growth and development.
The productivity of red (650–665 nm) LEDs on plant development is straightforward on the grounds that these wavelength frequencies entirely fit with the retention pinnacle of chlorophylls and phytochrome, while the enhanced blue light presented the possibility that development under regular light could be mirrored utilizing blue and red LEDs with negligible use of energy.