Answer:
The answer is "$238".
Step-by-step explanation:
Current worth![= \$ 17,000](https://tex.z-dn.net/?f=%3D%20%5C%24%2017%2C000)
depreciates by
in 3 years.
time= 19 years
depreciates rate=?
Using formula:
![\to \text{Worth= Current worth}(1- \frac{\text{depreciates rate}}{100})^{time}](https://tex.z-dn.net/?f=%5Cto%20%5Ctext%7BWorth%3D%20%20Current%20worth%7D%281-%20%5Cfrac%7B%5Ctext%7Bdepreciates%20rate%7D%7D%7B100%7D%29%5E%7Btime%7D)
![\to A_t=A_0(1-\frac{r}{100})^t](https://tex.z-dn.net/?f=%5Cto%20A_t%3DA_0%281-%5Cfrac%7Br%7D%7B100%7D%29%5Et)
calculates depreciate value in 3 year ![= \frac{1}{2} \times 17,000](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2017%2C000)
![= 8,500](https://tex.z-dn.net/?f=%3D%208%2C500)
so,
![A_t=8,500\\\\A_0=17,000\\\\t=3\ years](https://tex.z-dn.net/?f=A_t%3D8%2C500%5C%5C%5C%5CA_0%3D17%2C000%5C%5C%5C%5Ct%3D3%5C%20years)
![\to A_t=A_0(1-\frac{r}{100})^t\\\\\to 8,500= 17,000(1-\frac{r}{100})^3\\\\\to \frac{8,500}{17,000}= (1-\frac{r}{100})^3\\\\\to \frac{1}{2}= (1-\frac{r}{100})^3\\\\\to (\frac{1}{2})^{\frac{1}{3}}= (1-\frac{r}{100})\\\\\to 0.793700526 = (1-\frac{r}{100})\\\\\to \frac{r}{100} = (1-0.793700526)\\\\\to \frac{r}{100} = (1-0.8)\\\\\to r= 0.2 \times 100 \\\\\to r= 20 \%](https://tex.z-dn.net/?f=%5Cto%20A_t%3DA_0%281-%5Cfrac%7Br%7D%7B100%7D%29%5Et%5C%5C%5C%5C%5Cto%208%2C500%3D%2017%2C000%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%5Cfrac%7B8%2C500%7D%7B17%2C000%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1%7D%7B2%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5C%5C%5C%5C%5Cto%200.793700526%20%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5C%5C%5C%5C%5Cto%20%5Cfrac%7Br%7D%7B100%7D%20%3D%20%281-0.793700526%29%5C%5C%5C%5C%5Cto%20%5Cfrac%7Br%7D%7B100%7D%20%3D%20%281-0.8%29%5C%5C%5C%5C%5Cto%20r%3D%200.2%20%5Ctimes%20100%20%5C%5C%5C%5C%5Cto%20r%3D%2020%20%5C%25)
depreciates rate= 20%
![\to \text{Worth= Current worth}(1- \frac{\text{depreciates rate}}{100})^{time}](https://tex.z-dn.net/?f=%5Cto%20%5Ctext%7BWorth%3D%20%20Current%20worth%7D%281-%20%5Cfrac%7B%5Ctext%7Bdepreciates%20rate%7D%7D%7B100%7D%29%5E%7Btime%7D)
![= \$ 17,000 (1- \frac{20}{100})^{19}\\\\= \$ 17,000 (1-0.2)^{19}\\\\= \$ 17,000 (0.8)^{19}\\\\= \$ 17,000 \times 0.014\\\\= \$ 238](https://tex.z-dn.net/?f=%3D%20%5C%24%2017%2C000%20%281-%20%5Cfrac%7B20%7D%7B100%7D%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%281-0.2%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%280.8%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%5Ctimes%200.014%5C%5C%5C%5C%3D%20%5C%24%20238)
Answer:
Step-by-step explanation:
1. 56 + 81 = 137
2. The exterior angle theorem means that the 2 angles within a triangle that is on the opposite side of the angle outside the triangle could be added to find the angle that is outside of the triangle.
3. 56 and 81 are on the opposite side of the "x" outside the triangle which means that they could be added together which equals 137 degrees.
Hope this helps!
Answer:
g(z-1)
Step-by-step explanation:
Answer:
D+B 12
Step-by-step explanation:
No, no value for x will result in you getting the same amount of money
I.e. on the first day if x =2 you earn 33. on the second day you would've earned 44. Of course this may be wrong so best to double check