Answer:
0.8 N
Explanation:
From coulomb's law,
Formula:
F = kqq'/r²........................ Equation 1
Where F = Force of repulsion, k = coulomb's constant, q = first positive charge, q' = second positive charge, r = distance between the charge.
Given: q = 20 μC = 20×10⁻⁶ C, q' = 100 μC = 100×10⁻⁶ C, r = 150 cm = 1.5 m.
Constant: k = 9×10⁹ Nm²/C²
Substitute these values into equation 1
F = (20×10⁻⁶ )( 100×10⁻⁶)(9×10⁹)/1.5²
F = 1800×10⁻³/2.25
F = 1.8/2.25
F = 0.8 N
Answer:
D) shrivel up, since the atmosphere exerts more force on the can as it cools.
Explanation:
As the water in the can is boiled the can gets heated up and contains hot vapour and gases which are rare in density and are in their expanded state. In this state when the can is sealed tightly such that no air leaks in or out of the can. When the temperature of the can drops, the gases shrink in volume and the pressure inside the can become less than the pressure of the atmosphere which leads to shriveling of the can.
It should be 0.25kg because you converter from g to kg and since 1g<1kg so you move the decimal to the left
Answer:
The value is 
Explanation:
From the question we are told
The pipe diameter at location 1 is 
The velocity at location 1 is 
The diameter at location 2 is 
Generally the area at location 1 is

=> 
=> 
=> 
Generally the area at location 1 is

=> 
=> 
Generally from continuity equation we have that

=> 
=> 
=> 
Answer:
took longer to complete one oscillation, that means its PERIOD increased, and the distance between the peaks of the graph would be longer.
line would be less. the period of oscillation would have any effect on the graph