Answer:
Explanation:
His displacement is 0 because he ended up exactly where he started.
Answer:
11.9 years
Explanation:
We can find the orbital period by using Kepler's third law, which states that the ratio between the square of the orbital period and the cube of the average distance of a planet from the Sun is constant for every planet orbiting aroudn the Sun:

Using the Earth as reference, we can re-write the law as

where
Te = 1 year is the orbital period of the Earth
re = 1 AU is the average distance of the Earth from the Sun
Tj = ? is the orbital period of Jupiter
rj = 5.20 AU is the average distance of Jupiter from the Sun
Substituting the numbers and re-arranging the equation, we find:

The energy of a single photon at the transmitted frequency is 
Answer: Option b
<u>Solution:</u>
Energy of photon is given as 
Where c is the velocity of Light 
h is planck's constant 
λ is the wavelength of photon
Energy of photon can be rewritten as 
Where f is the frequency of photon
Frequency of photon is obtained by dividing velocity of light by wavelength of photon.


Answer:
48.22 kg
Explanation:
Applying the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
Note: Since both skaters were initially at rest, then their total momentum before collision is equal to zero.
And the velocity of the second skater will be in opposite direction to the first.
0 = mv+m'v'.................... Equation 1
Where m = mass of the first skater, m' = mass of the second skater, v = final velocity of the first skater, v' = final velocity of the second skater.
make v' the subject of the equation
m' = -mv/v'................. Equation 2
Given: m = 62 kg, v = 0.7 m/s, v' = -0.9 m/s (opposite direction to the first)
Substitute into equation 1
m' = -62(0.7)/-0.9
m' = 48.22 kg