Answer:
The pressure of N₂ gas in cylinder B when compressed at constant temperature increases due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container.
Explanation:
Gas helps to explain the behavior of gases when one or more of either temperature, volume or pressure is varying while the other variables are kept constant.
In the gas cylinder B, the temperature of the given mass of gas is kept constant, however, the volume is decreased by pushing the movable piston farther into the cylinder. According to the gas law by Robert Boyle, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature. This increase in pressure is due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container. As the cylinder becomes smaller, the gas molecules which were spread out further become more packed closely together, therefore, their frequency of collision increases building up pressure in the process.
Answer:
15.0 mL
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
Using PV = nRT, we can calculate the moles of the sample.
874 mmHg = 116,524 Pa
n = PV/RT
n = 116,524 x 294 x 10⁻⁶ / 8.314 x (140 + 273)
n = 9.98 x 10⁻³ mol
moles = mass / Mr
Mr = 0.271/9.98 x 10⁻³
Mr = 27.2
Mass of empirical formula = 14
Repeat units = 27.2 / 14 ≈ 2
Formula of substance:
C₂H₄
Combustion equation:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
1 mole produces 2 moles of CO₂, so 3 moles will produce 6 moles CO₂
I Think.
Neutron(s).
I Think.
Answer:
6 mass
Explanation:
because the si unit of gram is mass