Answer:
It must be 4 times high.
Explanation:
- Assuming that the car can be treated as a point mass, and that the ramp is frictionless, the total mechanical energy must be conserved.
- This means, that at any time, the following must be true:
- ΔK (change in kinetic energy) = ΔU (change in gravitational potential energy)
⇒ 
- Let's call v₁, to the final speed of the car, and h₁ to the height of the ramp.
So, at the bottom of the ramp, all the gravitational potential energy
must be equal to the kinetic energy of the car (Defining the bottom of
the ramp as our zero reference for the gravitational potential energy):
(1)
- Now, let's do v₂ = 2* v₁
- Replacing in (1) we get:
(2)
- Dividing (2) by (1), and rearranging terms, we get:
- h₂ = 4* h₁
I think only if they were too overpowered maybe, but the modern world doesn't except this kind of dictatorship. Most armies are much more powerful than in the past.
Answer:
The galaxy is moving away from the observer
Explanation: when a galaxy is moving away from us, the light we percieve from it is "streched". Since the wavelength has an inverse raltionship whith frequency, the longer the wavelength is, the lower the frequency. And lower frequencies correspond to red and infrarred light.
So when we see the light has shifted to the infrarred part of the spectrum, it means the source is traveling away from us, making the light waves we percieve streched and move from visible light to infrarred.
The answer is A. Hope this helps. :)
Explanation:
after 5 seconds, the velocity is (5s)(3m/s²) = 15m/s
The displacement after 5s is
x=vo + (1/2)at²
x = 0 + (1/2)(3m/s²)(5s)(5s)
x= 37.5 m