Answer:
Yes, the rocks are made of matter
Explanation:
Let's remember the definition of matter.
Matter is all that has mass and occupies a place in space. Therefore, if we measure the mass of each rock we will know its mass, the other fact is that rocks like any particular body are occupying a place in an empty space.
The opposite of this is antimatter and can its extent be given by the quantum mechanics.
First you do the first parenthesis, (1.08 x 10 - 3) and you do it in the order of operations! (parenthesis, exponents, multiplication/division, add/subtract) to get 7.8. Then you take the second parenthesis (9.3 x 10 - 4) and do the same thing to get 89! You then times 7.8 by 89 to get 694.2! If it needs more elaboration just ask ^.^
Answer:
false gravity is not considered matter
More attracted to the nucleus because they are further from the nucleus. In addition, the screening effect, repulsion of inner electrons on the valence electrons, will effectively reduce the attraction of the valence electrons toward the nucleus.
Answer:
True
Explanation:
When a nuclear power plants ends its operating life, it is necessary to dispose correctly all the radioactive material left from the operations of the power plant.
In fact, apart from the fuel rods (which contain the uranium that is the fuel of the nuclear reactions), other materials of the core (such as the vessel) becomes radioactive due to the prolonged exposure to the products of nuclear reactions in the core.
As a result, all these materials remain radioactive for very long time (hundreds or thousands of years). It is therefore important to dispose them correctly, in proper sealed containers which are able to shield the radiation emitted by these radioactive element (alpha, beta and gamma radiation).
Therefore, "waste from nuclear power plants must be disposed of in radioactively shielded storage containers" is a correct statement.