Answer:
<em>The velocity of the ball as it hit the ground = 19.799 m/s</em>
Explanation:
Velocity: Velocity of a body can be defined as the rate of change of displacement of the body. The S.I unit of velocity is m/s. velocity is expressed in one of newtons equation of motion, and is given below.
v² = u² + 2gs.......................... Equation 1
Where v = the final velocity of the ball, g = acceleration due to gravity, s = the height of the ball
<em>Given: s = 20 m, u = 0 m/s</em>
<em>Constant: g = 9.8 m/s²</em>
<em>Substituting these values into equation 1,</em>
<em>v² = 0 + 2×9.8×20</em>
<em>v² = 392</em>
<em>v = √392</em>
<em>v = 19.799 m/s.</em>
<em>Therefore the velocity of the ball as it hit the ground = 19.799 m/s</em>
Answer: 4.8 s
Explanation:
We have the following data:
the mass of the raft
the force applied by Sawyer
the raft's final speed
the raft's initial speed (assuming it starts from rest)
We have to find the time 
Well, according to Newton's second law of motion we have:
(1)
Where
is the acceleration, which can be expressed as:
(2)
Substituting (2) in (1):
(3)
Where 
Isolating
from (3):
(4)
Finally:
Answer:
The answer is A. Cementing...
Explanation:
hope this helps