Answer:
density d = 1.59 g/cm^3
The density of the rock is 1.59 g/cm^3
Explanation:
The density of an object can be derived by measuring its mass and then measuring its volume by submerging it in a graduated cylinder.
Density = mass/volume of water displaced
d = m/v ........1
Given;
mass m = 344 g
Volume of water displaced v = 216 cm^3
from equation 1, we can calculate the value of the density;
Substituting the given values;
d = 344/216 g/cm^3
d = 1.592592592592 g/cm^3
d = 1.59 g/cm^3
The density of the rock is 1.59 g/cm^3
Answer:
Kindly find the graphs attached
Explanation:
For figure 1: There is a steady increase in the position of the object as time increases. This is because despite the negative acceleration (deceleration), the object continues to move and cover more ground as time goes by.
<em>The straight line graph is observed because the acceleration is constant and not varying.</em>
For Figure 2: The graph of velocity vs time will have an inverted nature. This is because since the object is decelerating, it is reducing in its velocity as time goes by (increases). <em>This is also in a straight line since the deceleration is constant.</em>
Answer:
Since 2 pi = 360 deg and pi equals 180 deg, 30 deg = pi / 6.
S = theta * R = pi / 6 * 3 cm = 1.57 cm
Answer:
The answer is 30 degrees.
Explanation:
The angle between the index and pinky fingers is 15 degrees.
Twice this angle is 2×15=30degrees.
Weight = (mass) x (gravity)
On Earth ...
Weight = (1 kg) x (9.8 m/s^2)
Weight = 9.8 Newtons