Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks
Answer:
B. $1,400
Step-by-step explanation:
8.75 x 20 x 8 =
8.75 x 160 = $1400
B
Hope that helps!
Answer:
4,099 and 5,011
Step-by-step explanation:
This problem can be solved by taking options one by one.
Option (1) : 4,099
Digit in ones place = 9
The value of the digit in tens place = 90
. It is correct.
Option (2) : 4,110
Digit in one places = 0
The value of the digit in tens place = 10
It is incorrect.
Option (3) : 5,909
Digit in one places = 9
The value of the digit in tens place = 0
It is again incorrect.
Option (4) : 5,011
Digit in one places = 1
The value of the digit in tens place = 10
. It is correct.
Hence, in option (a) and (d), the he ones place is 1/10 the value of the digit in the tens place.
Answer:
15 + 3n
Triple the amount of evening which is “n” so it would “3n”
The morning amount would still be 15