Answer:
.3
Step-by-step explanation:
Take path A = .5
Then Path D = .6
P(a and D) = .5 *.6 = .3
Answer:
0.2754
Step-by-step explanation:
Probability of saving a penalty kick = 0.617
p = 0.617 ; q = 1 - p = 1 - 0.617 = 0.383
number of trials, n = 7
Number of saves, x = 5
Using the binomial probability relation :
P(x = x) = nCx * p^x * q^(n-x)
P(x = 5) = 7C5 * 0.617^5 * 0.383^2
P(x = 5) = 21 * 0.0894181 * 0.146689
P(x = 5) = 0.2754
Answer:
1/6
Step-by-step explanation:
on the cube, each number is listed one time. if he rolls the cube one time, he has 1/6 chance of it landing on 4.
Answer:
One of the obvious non-trivial solutions is
.
Step-by-step explanation:
Suppose the matrix A is as follows:
![A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&3_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%26a_%7B12%7D%26a_%7B13%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%263_%7B23%7D%5C%5Ca_%7B31%7D%26a_%7B32%7D%26a_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
The observed system
after multiplying looks like this
![Ax=0 \iff \left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right] \cdot \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] =0 \iff \\ \\a_{11}x_1+a_{12}x_2+a_{13}x_3=0\\a_{21}x_1+a_{22}x_2+a_{23}x_3=0\\a_{31}x_1+a_{32}x_2+a_{33}x_3=0\\\\](https://tex.z-dn.net/?f=Ax%3D0%20%5Ciff%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%26a_%7B12%7D%26a_%7B13%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%26a_%7B23%7D%5C%5Ca_%7B31%7D%26a_%7B32%7D%26a_%7B33%7D%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D0%20%5Ciff%20%5C%5C%20%5C%5Ca_%7B11%7Dx_1%2Ba_%7B12%7Dx_2%2Ba_%7B13%7Dx_3%3D0%5C%5Ca_%7B21%7Dx_1%2Ba_%7B22%7Dx_2%2Ba_%7B23%7Dx_3%3D0%5C%5Ca_%7B31%7Dx_1%2Ba_%7B32%7Dx_2%2Ba_%7B33%7Dx_3%3D0%5C%5C%5C%5C)
Since we now that
, where
are the columns of the matrix A, we actually know this:
![-2\cdot \left[\begin{array}{ccc}a_{11}\\a_{21}\\a_{31}\end{array}\right] +3\cdot \left[\begin{array}{ccc}a_{12}\\a_{22}\\a_{32}\end{array}\right] -5\cdot \left[\begin{array}{ccc}a_{13}\\a_{23}\\a_{33}\end{array}\right] =\left[\begin{array}{ccc}0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=-2%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%5C%5Ca_%7B21%7D%5C%5Ca_%7B31%7D%5Cend%7Barray%7D%5Cright%5D%20%2B3%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B12%7D%5C%5Ca_%7B22%7D%5C%5Ca_%7B32%7D%5Cend%7Barray%7D%5Cright%5D%20-5%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B13%7D%5C%5Ca_%7B23%7D%5C%5Ca_%7B33%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Once we multiply and sum up these 3 by 1 matrices, we get that these equations hold:

This actually means that the solution to the previously observed system of equations (or equivalently, our system
) has a non-trivial solution
.
An = a1 + (n - 1)d, n=1000, a1=24, d=38-31=7 substitute
a(1000) = 24 + (1000 - 1)*7=24+999*7=7017