The answer is "A. greater than" because if the number of edges increase, the measure of each exterior angle increases too!
Hope this helps. :)
The answer is 2.09 I hope this helped you
The denominator is 14-x.
Since the denominator cannot be equal to zero, you take the denominator, set it equal to zero, and solve.
This ill give you the value or values that must be eliminated (cannot be in the domain).
14 - x = 0
add x to both sides
14 = x
The domain is x ≠ 14
OR
(- ∞, 14) ∪ (14, ∞)
OR
All real numbers except 14
So, I came up with something like this. I didn't find the final equation algebraically, but simply "figured it out". And I'm not sure how much "correct" this solution is, but it seems to work.
![f(x)=\sin(\omega(x))\\\\f(\pi^n)=\sin(\omega(\pi^n))=0, n\in\mathbb{N}\\\\\\\sin x=0 \implies x=k\pi,k\in\mathbb{Z}\\\Downarrow\\\omega(\pi^n)=k\pi\\\\\boxed{\omega(x)=k\sqrt[\log_{\pi} x]{x},k\in\mathbb{Z}}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csin%28%5Comega%28x%29%29%5C%5C%5C%5Cf%28%5Cpi%5En%29%3D%5Csin%28%5Comega%28%5Cpi%5En%29%29%3D0%2C%20n%5Cin%5Cmathbb%7BN%7D%5C%5C%5C%5C%5C%5C%5Csin%20x%3D0%20%5Cimplies%20x%3Dk%5Cpi%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%5C%5CDownarrow%5C%5C%5Comega%28%5Cpi%5En%29%3Dk%5Cpi%5C%5C%5C%5C%5Cboxed%7B%5Comega%28x%29%3Dk%5Csqrt%5B%5Clog_%7B%5Cpi%7D%20x%5D%7Bx%7D%2Ck%5Cin%5Cmathbb%7BZ%7D%7D)