So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:
Vf^2=Vo^2+2ax
Plugging in values:
361=19.6x
X=18 m
Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:

Answer:
Adding heat makes the particles move faster so the particles have more kinetic energy when more thermal energy is added
Explanation:
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).
Answer:
the smallest radius of the circular path is 8.1 km
Explanation:
The computation of the smallest radius of the circular path is given below:
Given that
V = Velocity = 201 m/s
a_c = acceleration = 5 m/s^2
radius = ?
As we know that
a_c = V^2 ÷ r
5 = 201^2 ÷ r
r = 201^2 ÷ 5
= 8,080.2 g
= 8.1 km
Hence, the smallest radius of the circular path is 8.1 km