To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.
The trajectory equation from the motion kinematic equations is given by

Where,
a = acceleration
t = time
= Initial velocity
= initial position
In addition to this we know that speed, speed is the change of position in relation to time. So

x = Displacement
t = time
With the data we have we can find the time as well




With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,





Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.
Answer:
4. B and D
Explanation:
Two points along a transverse wave (such as the one in the figure) are said to be in phase when:
- the vertical position of the two points is the same
- The oscillation of the wave is going in the same way for both points
Basically, we say that two points are in phase when they are separated by a complete cycle (one complete oscillation) of the wave.
For this wave, we see that point B and C have same displacement, but they are not in phase since in B the oscillation is going down while in C is going up.
Instead, B and D are in phase, because they are separated by one complete cycle: both points have same displacement and the oscillation is going in the same way for both of them.
1.) appearance
2.)texture
3.)color
4.)melting point
5.)odor
Answer:
Explanation:
Q₁ = 20 X 10⁻⁶ C
Q₂ = -45 X 10⁻⁶ C
d is required distance.
F = Force between the = 7 N
F = k x Q₁ X Q₂ / d²
d² = k x Q₁ X Q₂ / F = 20 X 45 X 10⁻¹² X 9 X 10⁹ /7
=1.157
d = 1.075 m