Current is inversely proportional to the resistance of the resistor and directly to the potential difference across it.
I = V/R = 6/12 = 0.5 A
It means, <span>Acceleration increases as mass decreases.
So, option C is your answer.
Hope this helps!
</span>
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
Lifting a mass to a height, you give it gravitational potential energy of
(mass) x (gravity) x (height) joules.
To give it that much energy, that's how much work you do on it.
If 2,000 kg gets lifted to 1.25 meters off the ground, its potential energy is
(2,000) x (9.8) x (1.25) = 24,500 joules.
If you do it in 1 hour (3,600 seconds), then the average power is
(24,500 joules) / (3,600 seconds) = 6.8 watts.
None of these figures depends on whether the load gets lifted all at once,
or one shovel at a time, or one flake at a time.
But this certainly is NOT all the work you do. When you get a shovelful
of snow 1.25 meters off the ground, you don't drop it and walk away, and
it doesn't just float there. You typically toss it, away from where it was laying
and over onto a pile in a place where you don't care if there's a pile of snow
there. In order to toss it, you give it some kinetic energy, so that it'll continue
to sail over to the pile when it leaves the shovel. All of that kinetic energy
must also come from work that you do ... nobody else is going to take it
from you and toss it onto the pile.
Answer:
6.88 m/s
Explanation:
The Conservation of Energy states that:
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy
So we can write

We can cancel the common factor of
which leaves us with

Lets solve for 

Subtract
from both sides of the equation.

Multiply both sides of the equation by 2.

Simplify the left side.
Apply the distributive property.

Cancel the common factor of 2.

Take the square root of both sides of the equation to eliminate the exponent on the right side.

We are given
.
We can now solve for the final velocity.

Anything multiplied by 0 is 0.


