Potential energy is stored energy. For example, if a bowling ball is on top of a giant hill, we say it has potential energy because it has the potential to do work which is to roll down the hill.
Kinetic energy is the energy of movement so once that ball rolls down that hill, that potential energy is converted to kinetic energy.
Answer:
1.) h = 164.8 m
2.) U = 49.1 m/s
3.) t = 1.43 seconds
Explanation:
1.) A soccer ball is dropped from the top of a building. It takes 5.8 seconds to fall to the ground. The height of the building is...?
Since the soccer ball is dropped from the building, the initial velocity U will be equal to zero
Using second equation of motion
h = Ut + 1/2gt^2
Substitutes the time into the formula
h = 1/2 × 9.8 × 5.8^2
h = 164.8 m
2. The Falcon 9 launches to a height of 123 meters. What is its vertical initial velocity?
At maximum height final velocity = 0
Using the third law of motion
V^2 = U^2 - 2gH
0 = U^2 - 2 × 9.8 × 123
U^2 = 2410.8
U = 49.1 m/s
3. An apple falls from rest off a 10.m m tree. How long will it take before it hits the ground?
Since the apple fall from rest, the initial velocity U will be equal to zero
Using the second equation of motion,
h = Ut + 1/2gt^2
substitute all the parameters into the formula
10 = 1/2 × 9.8 × t^2
10 = 4.9t^2
t^2 = 10/4.9
t^2 = 2.04
t = 1.43 seconds
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.
Did you try looking it up ?