<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>-</u><u>1</u><u>:</u><u>-</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>2</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>3</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>4</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>5</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>6</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>7</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>8</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>9</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>10</u>

<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.
Solution:
Let the slope of the best fit line be represented by '
'
and the slope of the worst fit line be represented by '
'
Given that:
= 1.35 m/s
= 1.29 m/s
Then the uncertainity in the slope of the line is given by the formula:
(1)
Substituting values in eqn (1), we get
= 0.03 m/s
C. The force is a constant change, because her position on the Ferris wheel will constantly change. I believe this is the answer, but use sources to double check. I might use different vocab. then your teachers.
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum