Hi the answer your looking for is C, muscle: bone to bone connection.
Hope this helps you.
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.
I can't answer the question without the statements but I can tell you Calorimetry means measuring amounts of heat released or received during a chemical reaction.
Answer:
2,3-dimethylheptane.
CH₃ - CH - CH-CH₂-CH₂-CH₂-CH₂
| |
CH₃ CH₃
Explanation:
Hello there!
In this case, according to the given instructions, it is possible to draw the organic chemical structure by connecting seven carbon atoms along the parent chain with two methyl substituents at the second and third carbon atoms; thus, the resulting structure is:
CH₃ - CH - CH-CH₂-CH₂-CH₂-CH₂
| |
CH₃ CH₃
Furthermore, the name would be 2,3-dimethylheptane according to the IUPAC rules for nomenclature.
Best regards!
Answer:
-3.617 °C
Explanation:
Step 1: Given data
Mass of water (m): 210.0 g
Energy released in the form of heat (Q): -3178 J (the minus sign corresponds to energy being released)
Specific heat of water (c): 4.184 J/g.°C
Temperature change (ΔT): ?
Step 2: Calculate the temperature change
We will use the following expression.
Q = c × m × ΔT
-3178 J = 4.184 J/g.°C × 210.0 g × ΔT
ΔT = -3.617 °C